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ON THE DOT PRODUCT GRAPH OF A COMMUTATIVE RING
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Let A be a commutative ring with nonzero identity, 1 <n < oo be an integer, and
R=AXAX---xA (n times). The total dot product graph of R is the (undirected)
graph TD(R) with vertices R* = R\{(0,0, ...,0)}, and two distinct vertices x and y
are adjacent if and only if x -y =0 € A (where x - y denote the normal dot product of
x and y). Let Z(R) denote the set of all zero-divisors of R. Then the zero-divisor dot
product graph of R is the induced subgraph ZD(R) of TD(R) with vertices Z(R)* =
Z(R)\{(0,0,...,0)}. It follows that each edge (path) of the classical zero-divisor
graph T'(R) is an edge (path) of ZD(R). We observe that if n =1, then TD(R) is
a disconnected graph and ZD(R) is identical to the well-known zero-divisor graph of
R in the sense of Beck—Anderson—Livingston, and hence it is connected. In this paper,
we study both graphs TD(R) and ZD(R). For a commutative ring A and n > 3, we
show that TD(R) (ZD(R)) is connected with diameter two (at most three) and with
girth three. Among other things, for n > 2, we show that ZD(R) is identical to the
zero-divisor graph of R if and only if either n =2 and A is an integral domain or R
is ring-isomovphic to Z, x Z, x Z,.

Key Words: Annihilator graph; Total graph; Zero-divisor graph.

2010 Mathematics Subject Classification: Primary: 13A15; Secondary: 13B99; 05C99.

1. INTRODUCTION

Let R be a commutative ring with nonzero identity, and let Z(R) be its set
of zero-divisors. Recently, there has been considerable attention in the literature
to associating graphs with algebraic structures (see [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [17), [18], [19], [20], [21], [23], [24], [25], and
[26]). Probably the most attention has been to the zero-divisor graph I'(R) for a
commutative ring R. The set of vertices of I'(R) is Z(R)* = Z(R)\{0}, and two
distinct vertices x and y are adjacent if and only if xy = 0. The concept of a zero-
divisor graph goes back to 1. Beck [13], who let all elements of R be vertices and
was mainly interested in colorings. The zero-divisor graph I'(R) was introduced by
David F. Anderson and Philip S. Livingston in [9], where it was shown, among
other things, that I'(R) is connected with diam(I'(R)) € {0, 1, 2, 3} and gr(I'(R)) €
{3, 4, oo}. For a recent survey article on zero-divisor graphs, see [12].
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Let A be a commutative ring with nonzero identity, 1 < n < oo be an integer,
and let R=AxAXx---xA (n times). Let x=(x;,...,x,),y=0.-.>Y,) €
R. Then the dot product x-y = x;y; + X3, +--+x,y, € A. In this paper, we
introduce the total dot product graph of R to be the (undirected) graph TD(R) with
vertices R* = R\{(0, 0, ..., 0)}, and two distinct vertices x and y are adjacent if and
only if x -y =0 € A. Let Z(R) denote the set of all zero-divisors of R. Then the zero-
divisor dot product graph of R is the induced subgraph ZD(R) of TD(R) with vertices
Z(R)* = Z(R)\{(0, 0, ..., 0)}. It follows that each edge (path) of the classical zero-
divisor graph I'(R) is an edge (path) of ZD(R). We observe that if n = 1, then TD(R)
is a disconnected graph, where ZD(R) is identical to I'(R) in the sense of Beck—
Anderson-Livingston, and hence it is connected.

In the second section, foran 1 <n <ocand R=A x A x --- X A (n times) for
some commutative ring A, we show (Theorem 2.2) that ZD(R) = I'(R) if and only if
either n =2 and A is an integral domain or R is ring-isomorphic to Z, X Z, X Z,.
If n =2 and A is not an integral domain or n = 3 and A is an integral, we show
(Theorem 2.3 and Theorem 2.5(1)) that ZD(R) is connected with diameter three. If
n > 4, we show (Theorem 2.5(3)) that ZD(R) is connected with diameter two. If n >
3, we show (Theorem 2.4 ) that TD(R) is connected with diameter two. We show
(Corollary 2.8)that ZD(R) contains no cycles if and only if » =2 and A is ring-
isomorphic to Z,. We show (Theorem 2.6) that if n > 3, then the girth of ZD(R) is
three (and hence the girth of TD(R) is three).

We recall some definitions. Let I' be a (undirected) graph. We say that T is
connected if there is a path between any two distinct vertices. For vertices x and y of
I', we define d(x, y) to be the length of a shortest path from x to y (d(x, x) = 0 and
d(x,y) = oo if there is no path). Then the diameter of I" is diam(I') = sup{d(x, y) | x
and y are vertices of I'}. The girth of I, denoted by gr(I), is the length of a shortest
cycle in I" (gr(I') = oo if I" contains no cycles). A graph I' is complete if any two
distinct vertices are adjacent.

Throughout, all rings are commutative with nonzero identity. Let R be a
commutative ring. Then Z(R) denotes the set of zero-divisors of R, and the
distance between two distinct vertices a, b of TD(R) (ZD(R)) is denoted by d(a, b)
(d,(a, b)). If ZD(R) is identical to I'(R), then we write ZD(R) = I'(R); otherwise,
we write ZD(R) # I'(R). As usual, Z and Z, will denote the integers and integers
modulo n, respectively. Any undefined notation or terminology is standard, as in
[22] or [16].

2. BASIC PROPERTIES OF TD(R) AND ZR(D)

We start this section with the following result.

Theorem 2.1. Let A be an integral domain and R = A x A. Then TD(R) is
disconnected and ZD(R) = I'(R) is connected. In particular, if A is ring-isomorphic to
Z,, then ZD(R) is complete (i.e., diam(ZD(R)) = 1) and gr(ZD(R)) = . If A is not
ring-isomorphic to Z,, then diam(ZD(R)) = 2 and gr(ZD(R)) = 4.

Proof. Let B ={(a, a), (—a, a), (a, —a)|a € A*}, and let x € B. Suppose that y €
R* and x-y=0. Since A is an integral domain, one can easily see that y € B.
Let M ={(a,0),(0,a)|a € A*} and let w € M. Suppose that w-s =0 for some
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s € R*. Again, since A is an integral domain, we conclude that s € M. Thus the
vertices (1, 1) and (0, 1) are not connected by a path in TD(R). Hence TD(R) is
disconnected. Since A is an integral domain, Z(R)* = M. Let x,y € M. Then x -
y = 0 iff xy = (0, 0). Thus ZD(R) = I'(R). Suppose that A is ring-isomorphic to Z,.
Then it is clear that diam(ZD(R)) = 1 and gr(ZD(R)) = co. Suppose A is not ring-
isomorphic to Z,. Since ZD(R) = I'(R) and A is an integral domain, diam(ZD(R)) =
2 by [24, Theorem 2.6] and gr(ZD(R)) = 4 by [10, Theorem 2.2]. |

Theorem 2.2. Let 2 <n < oo, A be a commutative ring with 1 20, and R = A x
AX--- XA (n times). Then ZD(R) = I'(R) if and only if either n =2 and A is an
integral domain or R is ring-isomorphic to Z, x Z, X Z,.

Proof. If n=2 and A is an integral domain, then by Theorem 2.1 we have
ZD(R) = I'(R). Suppose that R is ring-isomorphic to Z, x Z, x Z,. Then by simple
hand-calculations, for every x,y € Z(R)*, we have x-y =0 iff xy = (0,0,0), and
hence ZD(R) = I'(R).

Conversely, suppose that ZD(R) =I(R). Assume that A is not an
integral domain. Then there is an a € Z(A)*. Hence x = (1,4,0,0,...,0),y=
(a,-1,0,0,...,0) € Z(R)*, and x-y=0, but xy #(0,0,...,0). Thus x—y is
an edge of ZD(R) that is not an edge of I'(R), a contradiction. Thus A must
be an integral domain. Now assume that n =3 and A is not ring-isomorphic
to Z,. Then there is an a € A\{0, 1}. Let x =(1,4,0) and y = (—a, 1,0). Then
x # y and it is clear that x — y is an edge of ZD(R) that is not an edge of I'(R),
a contradiction again. Hence assume that n >4. Let x=(1,1,0,1,0,0,...,0)
and y=(-1,1,1,0,0,...,0). Then x#y, x-y=0, but xy#(0,0,...,0), a
contradiction. Thus we conclude that either n = 2 and A is an integral domain or
R is ring-isomorphic to Z, x Z, X Z,. |

In view of Theorem 2.1, we have the following result.

Theorem 2.3. Let A be a commutative ring with 1 # 0 that is not an integral domain,
and let R = A x A. Then the following statements hold:

(1) TD(R) is connected and diam(TD(R)) = 3;
(2) ZD(R) is connected, ZD(R) # I'(R), and diam(ZD(R)) = 3;
(3) gr(ZD(R)) = gr(TD(R)) = 3.

Proof. (1). Letx=(a,b),y=(c,d) € R*, where x # y, and assume that x - y #
0. Since A is not an integral domain, there are f, g € A* (not necessarily distinct)
such that fg=0. Let w= (—bf, af) and v = (—dg, cg). Note that w, v € Z(R).
Clearly x -w=w-v=v-y=0.Since x -y # 0, w # y and v # x. First, assume that
v,weZ(R)*. If x-y=0o0r yw=0,then x —v—yor x —w— yis a path of length
2 in TD(R) from x to y. Assume that neither x -y =0 nor y- w = 0. Then x, w, v, y
are distinct, and hence x — w — v — y is a path of length 3 in TD(R) from x to y.
Now assume that w = (0, 0) or v = (0, 0). If w = (0, 0), then replace w by (f, —f) €
Z(R)*, and hence x - w = (a, b) - (f, —f) = 0. Similarly, if v = (0, 0), then replace v
by (g, —g) € Z(R)*. Hence if w = (0,0) or v = (0, 0), then we are able to redefine
w and v so that w,ve€ Z(R)* and x-w=w-v=v-y=0. Thus as in the earlier
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argument, we conclude that there is a path of length at most 3 in TD(R) from x to
y. Thus TD(R) is connected and d,(x, y) < 3 for every x, y € R*. Now, let x = (1, 1)
and y = (1, 0). We show d;(x, y) = 3, and hence diam(TD(R)) = 3. Let w € R* such
that x - w = 0. Then w = (a, —a) for some a € A*. Since w-y=a # 0, dy(x,y) > 2.
Hence d;(x, y) = 3. In particular, let k, r € A* such that kt =0, w = (k, —k), and
v=(0,¢t). Then x — w — v — y is a path of length 3 in TD(R) from x to y.

(2). Since A is not an integral domain, ZD(R) # I'(R) by Theorem 2.2. Let
x,y € Z(R)*, and assume that x-y # 0. In view of the proof of (1), we are able
to find w, v € Z(R)* such that either x —w —y is a path in ZD(R) or x —v—y
is a path in ZD(R) or x —w —v —y is a path in ZD(R). Hence diam(ZD(R)) <
3. Let a € Z(A)*. Then x = (1,a),y =(0,1) € Z(R)*. We show d,(x,y) =3, and
thus diam(ZD(R)) = 3. Since x -y # 0, d,(x, y) > 1. Suppose there is a v = (g, h) €
Z(R)* such that x — v — y is a path of length 2 in ZD(R) from x to y. Since v-y =
0, we have & =0, and hence v = (g, 0). Since x-y =0, we have g =0 , and thus
v = (0, 0), a contradiction. Thus d,(x, y) = 3, and hence diam(ZD(R)) = 3.

(3). Since A is not an integral domain, there are a, b € A* (not necessarily
distinct) such that ab =0. Then x = (a,0),y = (0, b), w = (b, a) € Z(R)*. Hence
x —y—w— x is a cycle of length 3 in ZD(R). Thus gr(TD(R)) = gr(ZD(R)) = 3.

Theorem 2.4. Let A be a commutative ring with 1 20, 3 < n < oo, and let R = A x
A X --- X A (n times). Then TD(R) is connected and diam(TD(R)) = 2.

Proof. Letx= (x,...,x,),y=,-..,¥,) € R*, and suppose that x - y # 0. Then
let M={i|x;=y,=0,1<i<n}. Suppose that M is not the empty set. Then
choose a k € M, and let w = (w,,...,w,) € R*, where w, =1 and w, =0 if i #

k. Then x —w —y is a path of length 2 in TD(R) from x to y. Thus suppose
that M is the empty set. Then let f(x) = min{i|x; #0,1 <i<n} and f(y) =
min{i|y; 20,1 <i < n}. Since M is the empty set, we conclude that f(x) =1 or
f(y) = 1. We may assume that f(x) = 1. Let v = (x,)5 — X3)5, X3¥; — X1 V3, X1 V2 —
X¥1,0,0,0,...,0) € R. Suppose that v # (0,...,0). Then it is easy to check that
x-y=v-y=0.Since x-y # 0, v # x and v # y. Hence x — v — y is a path of length
2 in TD(R) from x to y. Suppose that v = (0,...,0). Then x,y, — x,¥, =0. Let
w=(—xy, x,0,0,...,0) € R. Since x; # 0, w € R*. Hence x - w = —x;x, + x;x, =
Oand w-y=x;y, —x,y, =0.Since x-w=w-y=0and x-y#0, x # w and y #
w. Thus x —w —y is a path of length 2 in TD(R) from x to y. Hence TD(R) is
connected and diam(TD(R)) = 2. O

Theorem 2.5. Let A be a commutative ring with 1 £ 0. Then the following statements
hold:

(1) If A is an integral domain and R = A x A x A, then ZD(R) is connected (ZD(R) #
I'(R) by Theorem 2.2) and diam(ZD(R)) = 3;

(2) If A is not an integral domain and R = A x A x A, then ZD(R) is connected
(ZD(R) # I'(R) by Theorem 2.2) and diam(ZD(R)) = 2;

B)If4<n<oo and R=AXAX---xA (n times), then ZD(R) is connected
(ZD(R) # I'(R) by Theorem 2.2) and diam(ZD(R)) = 2.
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Proof. (1). Since I'(R) is connected and every path in I'(R) is a path in
ZD(R), we conclude that ZD(R) is connected. Since diam(ZD(R)) < diam(I'(R))
and diam(I'(R)) =3 by [24, Theorem 2.6], we conclude that diam(ZD(R)) < 3.
Let x=(1,0,—-1),y=(0,1,—-1) € Z(R)*. Then x-y =1 # 0. We show d,(x,y) =
3. Let w= (w;, w,, w;) € R such that x-w=w-y=0. Then a trivial calculation
leads to w; = w, = w;. Since A is an integral domain, w € Z(R) if and only if w =
(0,0,0). Thus d,(x, y) = 3. Hence diam(ZD(R)) = 3.

(2). (Similar to the proof of Theorem 2.4). Let x = (x;, X5, X3), Y= (V1> Y2, ¥3)
€ Z(R)*, and suppose that x-y#0. Then let M={i|x;,=y;=0,1<i<3}.
Suppose that M is not the empty set. Then choose a k€ M, and let w=
(wy, wy, wy) € Z(R)*, where w, =1 and w; =0. If i # k, then x —w — y is a path
of length 2 in ZD(R) from x to y. Thus suppose that M is the empty set. Then let
f(x) =minf{i|x; #0,1 <i<n}and f(y) = min{i|y, #0,1 < i < 3}. Since M is the
empty set, we conclude that f(x) = 1 or f(y) = 1. We may assume that f(x) = 1. Let
V= (X,)3 — X3)5, XY — X1 V3, X1Y2 — X,¥,) € R. Suppose that v € Z(R)*. Then it is
easy to check that x-y=v-y=0.Sincex-y#0,v# xand v #y. Hence x —v —y
is a path of length 2 in ZD(R) from x to y. Suppose that v ¢ Z(R). Then choose an
a € Z(A)*. Then av € Z(R)* and x — av — y is a path of length 2 in ZD(R) from x
to y. Suppose that v = (0, 0, 0). Then x,y, — x,y; = 0. Let w = (—x,, x;, 0) € Z(R).
Since x; # 0, w € Z(R)*. Hence x - w = —x;x, + x;x, =0 and w-y = x;y, — x,5, =
0.Since x-w=w-y=0and x-y+#0, x # w and y # w. Thus x — w — y is a path
of length 2 in ZD(R) from x to y. Hence ZD(R) is connected and diam(ZD(R)) = 2.

(3). The proof is similar to the proof of Theorem 2.4. Just observe that if
n > 4, then v as in the proof of Theorem 2.4 is in Z(R). O

Theorem 2.6. Let A be a commutative ring with 1 #£0, 3 <n < oo, and R = A x
A X ---x A (n times). Then gr(ZD(R)) = gr(TD(R)) = 3.

Proof. Let a=(1,0,...,0),b=(0,1,0,...,0), and ¢=1(0,0,1,0,...,0). Then
a—b—c—aisacycle of length 3. |

Corollary 2.7. Let A be a commutative ring with 1 #0, 2 <n < oo, and R = A X
A X .-+ X A (n times). Then the following statements are equivalent:

(1) gr(ZD(R)) = 3;
(2) ¢r(TD(R)) = 3;

(3) A is not an integral domain and n =2 or n > 3.
Proof. This is clear by Theorem 2.3 and Theorem 2.6. |

Corollary 2.8. Let A be a commutative ring with 1 20, 2 <n < oo, and R = A x
A x -+ x A (n times). Then the following statements are equivalent:

(1) gr(ZD(R)) = oo;
(2) A is ring-isomorphic to Z, and n = 2;
(3) diam(ZD(R)) = 1.
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Proof. (1) = (2). Suppose gr(ZD(R)) = 0. Then n = 2 by Theorem 2.6. Hence
A is an integral domain by Corollary 2.7. Hence ZD(R) = I'(R) by Theorem 2.2.
Thus A is ring-isomorphic to Z, by [10, Theorem 2.4]. (2) = (3). It is clear. (3) =
(1). Since diam(ZD(R)) = 1, we conclude that n =2 and A is an integral domain
by Theorems 2.3 and 2.5. Thus A is ring-isomorphic to Z, by Theorem 2.1. Thus
gr(ZD(R)) = oc. O

Corollary 2.9. Let A be a commutative ring with 1 %0 such that A is not ring-
isomorphic to Z,, 0 <n < oo, and R=A x A X --- x A (n times). Then the following
statements are equivalent:

(1) gr(ZD(R)) = 4;

(2) ZD(R) =T(R);

(3) TD(R) is disconnected,

(4) n =2 and A is an integral domain.

Proof. This is clear by Theorem 2.1, Theorem 2.2, Corollary 2.7, and Corollary 2.8.
O

Corollary 2.10. Let A be a commutative ring with 1 #0, 2 <n < 0o, and R = A x
A x -+ X A (n times). Then the following statements are equivalent:

(1) diam(ZD(R)) = 3;
(2) Either A is not an integral domain and n = 2 or A is an integral domain and n = 3.

Proof. This is clear by Theorem 2.1, Theorem 2.3, and Theorem 2.5. O

Corollary 2.11. Let A be a commutative ring with 1 #0, 2 < n < oo, and R = A x
A X -+ X A (n times). Then the following statements are equivalent:

(1) diam(ZD(R)) = 2;
(2) Either A is an integral domain that is not ring-isomorphic to Z, and n =2, A is
not an integral domain, and n = 3, or n > 4.

Proof. 'This is clear by Theorem 2.1, Theorem 2.5, and Corollary 2.10. O

Corollary 2.12. Let A be a commutative ring with 1 #0, 2 <n < oo, and R = A x
AX---xX A (n times). Then diam(TD(R)) =3 if and only if A is not an integral
domain and n = 2.

Proof. This is clear by Theorem 2.1, Theorem 2.3, and Theorem 2.4. O

Corollary 2.13. Let A be a commutative ring with 1 #0, 2 <n < oo, and R = A x
A X --- X A (n times). Then the following statements are equivalent:

(1) diam(TD(R)) = 2;

(2) TD(R) is connected and n > 3;

(3) n>=3.

Proof. The proof is clear by Theorem 2.3 and Theorem 2.4. O
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Corollary 2.14. Let A be a commutative ring with 1 #£0, 2 <n < oo, and R = A x

AX .-

x A (n times). Then diam(TD(R)) = diam(ZD(R)) = 3 if and only if A is not

an integral domain and n = 2.

Proof. This is clear by Corollary 2.10 and Corollary 2.12. |
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