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ON THE DOT PRODUCT GRAPH OF A COMMUTATIVE RING
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Let A be a commutative ring with nonzero identity, 1 ≤ n < � be an integer, and
R = A× A× · · · × A (n times). The total dot product graph of R is the (undirected)
graph TD�R� with vertices R∗ = R\��0� 0� � � � � 0��, and two distinct vertices x and y

are adjacent if and only if x · y = 0 ∈ A (where x · y denote the normal dot product of
x and y). Let Z�R� denote the set of all zero-divisors of R. Then the zero-divisor dot
product graph of R is the induced subgraph ZD�R� of TD�R� with vertices Z�R�∗ =
Z�R�\��0� 0� � � � � 0��. It follows that each edge (path) of the classical zero-divisor
graph ��R� is an edge (path) of ZD�R�. We observe that if n = 1, then TD�R� is
a disconnected graph and ZD�R� is identical to the well-known zero-divisor graph of
R in the sense of Beck–Anderson–Livingston, and hence it is connected. In this paper,
we study both graphs TD�R� and ZD�R�. For a commutative ring A and n ≥ 3, we
show that TD�R� (ZD�R�) is connected with diameter two (at most three) and with
girth three. Among other things, for n ≥ 2, we show that ZD�R� is identical to the
zero-divisor graph of R if and only if either n = 2 and A is an integral domain or R

is ring-isomorphic to �2 × �2 × �2.
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1. INTRODUCTION

Let R be a commutative ring with nonzero identity, and let Z�R� be its set
of zero-divisors. Recently, there has been considerable attention in the literature
to associating graphs with algebraic structures (see [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [17], [18], [19], [20], [21], [23], [24], [25], and
[26]). Probably the most attention has been to the zero-divisor graph ��R� for a
commutative ring R. The set of vertices of ��R� is Z�R�∗ = Z�R�\�0�, and two
distinct vertices x and y are adjacent if and only if xy = 0. The concept of a zero-
divisor graph goes back to I. Beck [13], who let all elements of R be vertices and
was mainly interested in colorings. The zero-divisor graph ��R� was introduced by
David F. Anderson and Philip S. Livingston in [9], where it was shown, among
other things, that ��R� is connected with diam���R�� ∈ �0� 1� 2� 3� and gr���R�� ∈
�3� 4���. For a recent survey article on zero-divisor graphs, see [12].
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44 BADAWI

Let A be a commutative ring with nonzero identity, 1 ≤ n < � be an integer,
and let R = A× A× · · · × A (n times). Let x = �x1� � � � � xn�� y = �y1� � � � � yn� ∈
R. Then the dot product x · y = x1y1 + x2y2 + · · · + xnyn ∈ A. In this paper, we
introduce the total dot product graph of R to be the (undirected) graph TD�R� with
vertices R∗ = R\��0� 0� � � � � 0��, and two distinct vertices x and y are adjacent if and
only if x · y = 0 ∈ A. Let Z�R� denote the set of all zero-divisors of R. Then the zero-
divisor dot product graph of R is the induced subgraph ZD�R� of TD�R� with vertices
Z�R�∗ = Z�R�\��0� 0� � � � � 0��. It follows that each edge (path) of the classical zero-
divisor graph ��R� is an edge (path) of ZD�R�. We observe that if n = 1, then TD�R�
is a disconnected graph, where ZD�R� is identical to ��R� in the sense of Beck–
Anderson–Livingston, and hence it is connected.

In the second section, for an 1 ≤ n < � and R = A× A× · · · × A (n times) for
some commutative ring A, we show (Theorem 2.2) that ZD�R� = ��R� if and only if
either n = 2 and A is an integral domain or R is ring-isomorphic to �2 × �2 × �2.
If n = 2 and A is not an integral domain or n = 3 and A is an integral, we show
(Theorem 2.3 and Theorem 2.5(1)) that ZD�R� is connected with diameter three. If
n ≥ 4, we show (Theorem 2.5(3)) that ZD�R� is connected with diameter two. If n ≥
3, we show (Theorem 2.4 ) that TD�R� is connected with diameter two. We show
(Corollary 2.8)that ZD�R� contains no cycles if and only if n = 2 and A is ring-
isomorphic to �2. We show (Theorem 2.6) that if n ≥ 3, then the girth of ZD�R� is
three (and hence the girth of TD�R� is three).

We recall some definitions. Let � be a (undirected) graph. We say that � is
connected if there is a path between any two distinct vertices. For vertices x and y of
� , we define d�x� y� to be the length of a shortest path from x to y (d�x� x� = 0 and
d�x� y� = � if there is no path). Then the diameter of � is diam��� = sup�d�x� y� � x
and y are vertices of ��. The girth of � , denoted by gr���, is the length of a shortest
cycle in � (gr��� = � if � contains no cycles). A graph � is complete if any two
distinct vertices are adjacent.

Throughout, all rings are commutative with nonzero identity. Let R be a
commutative ring. Then Z�R� denotes the set of zero-divisors of R, and the
distance between two distinct vertices a� b of TD�R� (ZD�R�) is denoted by dT�a� b�
(dZ�a� b�). If ZD�R� is identical to ��R�, then we write ZD�R� = ��R�; otherwise,
we write ZD�R� �= ��R�. As usual, � and �n will denote the integers and integers
modulo n, respectively. Any undefined notation or terminology is standard, as in
[22] or [16].

2. BASIC PROPERTIES OF TD�R� AND ZR�D�

We start this section with the following result.

Theorem 2.1. Let A be an integral domain and R = A× A. Then TD�R� is
disconnected and ZD�R� = ��R� is connected. In particular, if A is ring-isomorphic to
�2, then ZD�R� is complete (i.e., diam�ZD�R�� = 1) and gr�ZD�R�� = �. If A is not
ring-isomorphic to �2, then diam�ZD�R�� = 2 and gr�ZD�R�� = 4.

Proof. Let B = ��a� a�� �−a� a�� �a�−a� � a ∈ A∗�, and let x ∈ B. Suppose that y ∈
R∗ and x · y = 0. Since A is an integral domain, one can easily see that y ∈ B.
Let M = ��a� 0�� �0� a� � a ∈ A∗� and let w ∈ M . Suppose that w · s = 0 for some
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ON THE DOT PRODUCT GRAPH OF A COMMUTATIVE RING 45

s ∈ R∗. Again, since A is an integral domain, we conclude that s ∈ M . Thus the
vertices �1� 1� and �0� 1� are not connected by a path in TD�R�. Hence TD�R� is
disconnected. Since A is an integral domain, Z�R�∗ = M . Let x� y ∈ M . Then x ·
y = 0 iff xy = �0� 0�. Thus ZD�R� = ��R�. Suppose that A is ring-isomorphic to �2.
Then it is clear that diam�ZD�R�� = 1 and gr�ZD�R�� = �. Suppose A is not ring-
isomorphic to �2. Since ZD�R� = ��R� and A is an integral domain, diam�ZD�R�� =
2 by [24, Theorem 2.6] and gr�ZD�R�� = 4 by [10, Theorem 2.2]. �

Theorem 2.2. Let 2 ≤ n < �, A be a commutative ring with 1 �= 0, and R = A×
A× · · · × A (n times). Then ZD�R� = ��R� if and only if either n = 2 and A is an
integral domain or R is ring-isomorphic to �2 × �2 × �2.

Proof. If n = 2 and A is an integral domain, then by Theorem 2.1 we have
ZD�R� = ��R�. Suppose that R is ring-isomorphic to �2 × �2 × �2. Then by simple
hand-calculations, for every x� y ∈ Z�R�∗, we have x · y = 0 iff xy = �0� 0� 0�, and
hence ZD�R� = ��R�.

Conversely, suppose that ZD�R� = ��R�. Assume that A is not an
integral domain. Then there is an a ∈ Z�A�∗. Hence x = �1� a� 0� 0� � � � � 0�� y =
�a�−1� 0� 0� � � � � 0� ∈ Z�R�∗, and x · y = 0, but xy �= �0� 0� � � � � 0�. Thus x − y is
an edge of ZD�R� that is not an edge of ��R�, a contradiction. Thus A must
be an integral domain. Now assume that n = 3 and A is not ring-isomorphic
to �2. Then there is an a ∈ A\�0� 1�. Let x = �1� a� 0� and y = �−a� 1� 0�. Then
x �= y and it is clear that x − y is an edge of ZD�R� that is not an edge of ��R�,
a contradiction again. Hence assume that n ≥ 4. Let x = �1� 1� 0� 1� 0� 0� � � � � 0�
and y = �−1� 1� 1� 0� 0� � � � � 0�. Then x �= y, x · y = 0, but xy �= �0� 0� � � � � 0�, a
contradiction. Thus we conclude that either n = 2 and A is an integral domain or
R is ring-isomorphic to �2 × �2 × �2. �

In view of Theorem 2.1, we have the following result.

Theorem 2.3. Let A be a commutative ring with 1 �= 0 that is not an integral domain,
and let R = A× A. Then the following statements hold:

(1) TD�R� is connected and diam�TD�R�� = 3;
(2) ZD�R� is connected, ZD�R� �= ��R�, and diam�ZD�R�� = 3;
(3) gr�ZD�R�� = gr�TD�R�� = 3.

Proof. (1). Let x = �a� b�� y = �c� d� ∈ R∗, where x �= y, and assume that x · y �=
0. Since A is not an integral domain, there are f� g ∈ A∗ (not necessarily distinct)
such that fg = 0. Let w = �−bf� af� and v = �−dg� cg�. Note that w� v ∈ Z�R�.
Clearly x · w = w · v = v · y = 0. Since x · y �= 0, w �= y and v �= x. First, assume that
v� w ∈ Z�R�∗. If x · y = 0 or y�w = 0, then x − v− y or x − w − y is a path of length
2 in TD�R� from x to y. Assume that neither x · y = 0 nor y · w = 0. Then x�w� v� y
are distinct, and hence x − w − v− y is a path of length 3 in TD�R� from x to y.
Now assume that w = �0� 0� or v = �0� 0�. If w = �0� 0�, then replace w by �f�−f� ∈
Z�R�∗, and hence x · w = �a� b� · �f�−f� = 0. Similarly, if v = �0� 0�, then replace v
by �g�−g� ∈ Z�R�∗. Hence if w = �0� 0� or v = �0� 0�, then we are able to redefine
w and v so that w� v ∈ Z�R�∗ and x · w = w · v = v · y = 0. Thus as in the earlier
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46 BADAWI

argument, we conclude that there is a path of length at most 3 in TD�R� from x to
y. Thus TD�R� is connected and dT�x� y� ≤ 3 for every x� y ∈ R∗. Now, let x = �1� 1�
and y = �1� 0�. We show dT�x� y� = 3, and hence diam�TD�R�� = 3. Let w ∈ R∗ such
that x · w = 0. Then w = �a�−a� for some a ∈ A∗. Since w · y = a �= 0, dT�x� y� > 2.
Hence dT�x� y� = 3. In particular, let k� t ∈ A∗ such that kt = 0, w = �k�−k�, and
v = �0� t�. Then x − w − v− y is a path of length 3 in TD�R� from x to y.

(2). Since A is not an integral domain, ZD�R� �= ��R� by Theorem 2.2. Let
x� y ∈ Z�R�∗, and assume that x · y �= 0. In view of the proof of (1), we are able
to find w� v ∈ Z�R�∗ such that either x − w − y is a path in ZD�R� or x − v− y
is a path in ZD�R� or x − w − v− y is a path in ZD�R�. Hence diam�ZD�R�� ≤
3. Let a ∈ Z�A�∗. Then x = �1� a�� y = �0� 1� ∈ Z�R�∗. We show dZ�x� y� = 3, and
thus diam�ZD�R�� = 3. Since x · y �= 0, dZ�x� y� > 1. Suppose there is a v = �g� h� ∈
Z�R�∗ such that x − v− y is a path of length 2 in ZD�R� from x to y. Since v · y =
0, we have h = 0, and hence v = �g� 0�. Since x · y = 0, we have g = 0 , and thus
v = �0� 0�, a contradiction. Thus dZ�x� y� = 3, and hence diam�ZD�R�� = 3.

(3). Since A is not an integral domain, there are a� b ∈ A∗ (not necessarily
distinct) such that ab = 0. Then x = �a� 0�� y = �0� b�� w = �b� a� ∈ Z�R�∗. Hence
x − y − w − x is a cycle of length 3 in ZD�R�. Thus gr�TD�R�� = gr�ZD�R�� = 3.

�

Theorem 2.4. Let A be a commutative ring with 1 �= 0, 3 ≤ n < �, and let R = A×
A× · · · × A (n times). Then TD�R� is connected and diam�TD�R�� = 2.

Proof. Let x = �x1� � � � � xn�� y = �y1� � � � � yn� ∈ R∗, and suppose that x · y �= 0. Then
let M = �i � xi = yi = 0� 1 ≤ i ≤ n�. Suppose that M is not the empty set. Then
choose a k ∈ M , and let w = �w1� � � � � wn� ∈ R∗, where wk = 1 and wi = 0 if i �=
k. Then x − w − y is a path of length 2 in TD�R� from x to y. Thus suppose
that M is the empty set. Then let f�x� = min�i � xi �= 0� 1 ≤ i ≤ n� and f�y� =
min�i � yi �= 0� 1 ≤ i ≤ n�. Since M is the empty set, we conclude that f�x� = 1 or
f�y� = 1. We may assume that f�x� = 1. Let v = �x2y3 − x3y2� x3y1 − x1y3� x1y2 −
x2y1� 0� 0� 0� � � � � 0� ∈ R. Suppose that v �= �0� � � � � 0�. Then it is easy to check that
x · y = v · y = 0. Since x · y �= 0, v �= x and v �= y. Hence x − v− y is a path of length
2 in TD�R� from x to y. Suppose that v = �0� � � � � 0�. Then x1y2 − x2y1 = 0. Let
w = �−x2� x1� 0� 0� � � � � 0� ∈ R. Since x1 �= 0, w ∈ R∗. Hence x · w = −x1x2 + x1x2 =
0 and w · y = x1y2 − x2y1 = 0. Since x · w = w · y = 0 and x · y �= 0, x �= w and y �=
w. Thus x − w − y is a path of length 2 in TD�R� from x to y. Hence TD�R� is
connected and diam�TD�R�� = 2. �

Theorem 2.5. Let A be a commutative ring with 1 �= 0. Then the following statements
hold:

(1) If A is an integral domain and R = A× A× A, then ZD�R� is connected (ZD�R� �=
��R� by Theorem 2.2) and diam�ZD�R�� = 3;

(2) If A is not an integral domain and R = A× A× A, then ZD�R� is connected
(ZD�R� �= ��R� by Theorem 2.2) and diam�ZD�R�� = 2;

(3) If 4 ≤ n < � and R = A× A× · · · × A (n times), then ZD�R� is connected
(ZD�R� �= ��R� by Theorem 2.2) and diam�ZD�R�� = 2.
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ON THE DOT PRODUCT GRAPH OF A COMMUTATIVE RING 47

Proof. (1). Since ��R� is connected and every path in ��R� is a path in
ZD�R�, we conclude that ZD�R� is connected. Since diam�ZD�R�� ≤ diam���R��
and diam���R�� = 3 by [24, Theorem 2.6], we conclude that diam�ZD�R�� ≤ 3.
Let x = �1� 0�−1�� y = �0� 1�−1� ∈ Z�R�∗. Then x · y = 1 �= 0. We show dZ�x� y� =
3. Let w = �w1� w2� w3� ∈ R such that x · w = w · y = 0. Then a trivial calculation
leads to w1 = w2 = w3. Since A is an integral domain, w ∈ Z�R� if and only if w =
�0� 0� 0�. Thus dz�x� y� = 3. Hence diam�ZD�R�� = 3.

(2). (Similar to the proof of Theorem 2.4). Let x= �x1� x2� x3�� y= �y1� y2� y3�
∈ Z�R�∗, and suppose that x · y �= 0. Then let M = �i � xi = yi = 0� 1 ≤ i ≤ 3�.
Suppose that M is not the empty set. Then choose a k ∈ M , and let w =
�w1� w2� w3� ∈ Z�R�∗, where wk = 1 and wi = 0. If i �= k, then x − w − y is a path
of length 2 in ZD�R� from x to y. Thus suppose that M is the empty set. Then let
f�x� = min�i � xi �= 0� 1 ≤ i ≤ n� and f�y� = min�i � yi �= 0� 1 ≤ i ≤ 3�. Since M is the
empty set, we conclude that f�x� = 1 or f�y� = 1. We may assume that f�x� = 1. Let
v = �x2y3 − x3y2� x3y1 − x1y3� x1y2 − x2y1� ∈ R. Suppose that v ∈ Z�R�∗. Then it is
easy to check that x · y = v · y = 0. Since x · y �= 0, v �= x and v �= y. Hence x − v− y
is a path of length 2 in ZD�R� from x to y. Suppose that v �∈ Z�R�. Then choose an
a ∈ Z�A�∗. Then av ∈ Z�R�∗ and x − av− y is a path of length 2 in ZD�R� from x
to y. Suppose that v = �0� 0� 0�. Then x1y2 − x2y1 = 0. Let w = �−x2� x1� 0� ∈ Z�R�.
Since x1 �= 0, w ∈ Z�R�∗. Hence x · w = −x1x2 + x1x2 = 0 and w · y = x1y2 − x2y1 =
0. Since x · w = w · y = 0 and x · y �= 0, x �= w and y �= w. Thus x − w − y is a path
of length 2 in ZD�R� from x to y. Hence ZD�R� is connected and diam�ZD�R�� = 2.

(3). The proof is similar to the proof of Theorem 2.4. Just observe that if
n ≥ 4, then v as in the proof of Theorem 2.4 is in Z�R�. �

Theorem 2.6. Let A be a commutative ring with 1 �= 0, 3 ≤ n < �, and R = A×
A× · · · × A (n times). Then gr�ZD�R�� = gr�TD�R�� = 3.

Proof. Let a = �1� 0� � � � � 0�� b = �0� 1� 0� � � � � 0�, and c = �0� 0� 1� 0� � � � � 0�. Then
a− b − c − a is a cycle of length 3. �

Corollary 2.7. Let A be a commutative ring with 1 �= 0, 2 ≤ n < �, and R = A×
A× · · · × A (n times). Then the following statements are equivalent:

(1) gr�ZD�R�� = 3;
(2) gr�TD�R�� = 3;
(3) A is not an integral domain and n = 2 or n ≥ 3.

Proof. This is clear by Theorem 2.3 and Theorem 2.6. �

Corollary 2.8. Let A be a commutative ring with 1 �= 0, 2 ≤ n < �, and R = A×
A× · · · × A (n times). Then the following statements are equivalent:

(1) gr�ZD�R�� = �;
(2) A is ring-isomorphic to �2 and n = 2;
(3) diam�ZD�R�� = 1.
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48 BADAWI

Proof. �1� ⇒ �2�. Suppose gr�ZD�R�� = �. Then n = 2 by Theorem 2.6. Hence
A is an integral domain by Corollary 2.7. Hence ZD�R� = ��R� by Theorem 2.2.
Thus A is ring-isomorphic to �2 by [10, Theorem 2.4]. �2� ⇒ �3�. It is clear. �3� ⇒
�1�. Since diam�ZD�R�� = 1, we conclude that n = 2 and A is an integral domain
by Theorems 2.3 and 2.5. Thus A is ring-isomorphic to �2 by Theorem 2.1. Thus
gr�ZD�R�� = �. �

Corollary 2.9. Let A be a commutative ring with 1 �= 0 such that A is not ring-
isomorphic to �2, 0 ≤ n < �, and R = A× A× · · · × A (n times). Then the following
statements are equivalent:

(1) gr�ZD�R�� = 4;
(2) ZD�R� = ��R�;
(3) TD�R� is disconnected;
(4) n = 2 and A is an integral domain.

Proof. This is clear by Theorem 2.1, Theorem 2.2, Corollary 2.7, and Corollary 2.8.
�

Corollary 2.10. Let A be a commutative ring with 1 �= 0, 2 ≤ n < �, and R = A×
A× · · · × A (n times). Then the following statements are equivalent:

(1) diam�ZD�R�� = 3;
(2) Either A is not an integral domain and n = 2 or A is an integral domain and n = 3.

Proof. This is clear by Theorem 2.1, Theorem 2.3, and Theorem 2.5. �

Corollary 2.11. Let A be a commutative ring with 1 �= 0, 2 ≤ n < �, and R = A×
A× · · · × A (n times). Then the following statements are equivalent:

(1) diam�ZD�R�� = 2;
(2) Either A is an integral domain that is not ring-isomorphic to �2 and n = 2, A is

not an integral domain, and n = 3, or n ≥ 4.

Proof. This is clear by Theorem 2.1, Theorem 2.5, and Corollary 2.10. �

Corollary 2.12. Let A be a commutative ring with 1 �= 0, 2 ≤ n < �, and R = A×
A× · · · × A (n times). Then diam�TD�R�� = 3 if and only if A is not an integral
domain and n = 2.

Proof. This is clear by Theorem 2.1, Theorem 2.3, and Theorem 2.4. �

Corollary 2.13. Let A be a commutative ring with 1 �= 0, 2 ≤ n < �, and R = A×
A× · · · × A (n times). Then the following statements are equivalent:

(1) diam�TD�R�� = 2;
(2) TD�R� is connected and n ≥ 3;
(3) n ≥ 3.

Proof. The proof is clear by Theorem 2.3 and Theorem 2.4. �
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ON THE DOT PRODUCT GRAPH OF A COMMUTATIVE RING 49

Corollary 2.14. Let A be a commutative ring with 1 �= 0, 2 ≤ n < �, and R = A×
A× · · · × A (n times). Then diam�TD�R�� = diam�ZD�R�� = 3 if and only if A is not
an integral domain and n = 2.

Proof. This is clear by Corollary 2.10 and Corollary 2.12. �
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